पान:Ganitatalya gamatijamati.pdf/28

विकिस्रोत कडून
Jump to navigation Jump to search
या पानाचे मुद्रितशोधन झालेले आहे



६. दोनच पर्याय : सत्य किंवा असत्य

 कोणतंही प्रमेय सिद्ध करायला गणितज्ञाला तर्कशास्त्राच्या नियमांचा उपयोग करावा लागतो. ह्यापैकी एका विशिष्ट नियमाचा प्रयोग गणितात अनेक वेळा केला जातो आणि तो म्हणजे असा :

 ‘अमुक एक विधान सत्य तरी असेल किंवा असत्य तरी असेल. आणखी तिसरा पर्याय नाही.'

 समजा, ‘अ’ हे एक विधान आहे आणि ते सत्य आहे असं सिद्ध करायचं आहे. कधी कधी 'अ' ची सत्यता प्रत्यक्ष सिद्ध करणं अवघड असतं म्हणून गणिती वेगळा मार्ग अवलंबितो. तो असं गृहीत धरतो की ‘अ’ हे असत्य आहे. तसं गृहीत धरलं तर त्यातून कायकाय निष्कर्ष निघतील? जर त्यापैकी एखादा निष्कर्ष असत्य किंवा पूर्वी सिद्ध केलेल्या नियमांशी विसंगत निघाला तर “अ असत्य आहे" हे विधान चूक ठरतं आणि पर्यायाने ‘अ’ सत्य आहे असा निष्कर्ष निघतो.

 ह्याची दोन उदाहरणे खाली दिली आहेत.

कुतूहलजनक संख्या किती? :

 मागील लेखात १, २, ३..... इत्यादि आकड्यांची संख्या असंख्य आहे असं म्हटलं होतं. त्यातील कुतूहलजनक गुण असलेल्या संख्या किती असतील? इथे कुतूहलजनक गुण म्हणजे कोणताही गुण समजावा, ज्यामुळे ती संख्या आपलं लक्ष आकर्षित करू शकेल. उदाहरणार्थ, १११