पान:Ganitatalya gamatijamati.pdf/13

विकिस्रोत कडून
Jump to navigation Jump to search
या पानाचे मुद्रितशोधन झालेले आहे
गणितातल्या गमती जमती


गणितातल्या गमतीजमती.pdf
चित्र क्रमांक २

 ह्या सर्व पुलांवरून एका आणि फक्त एकदाच चालत जाता येईल काय? अनेकांनी प्रयल केला, पण त्यांना ते जमलं नाही. मग ही गोष्ट अंशक्य समजावी का? कोनिग्सबर्गला भेट देणा-या अनेक विद्वानांना हा प्रश्न विचारून गावकरी दमले, अखेर त्या प्रश्नाचं समाधानकारक उत्तर ऑयलर नावाच्या प्रख्यात गणितज्ञाने दिलं. हे उत्तर शोधायला ऑयलरलासुद्धा पुष्कळ डोकं खाजवावं लागलं. पण शेवटी त्याने शोधून काढलेला नियम कोनिग्सबर्गच्या सात पुलांनाच लागू होत नव्हता, तर त्याशिवाय इतरही अनेक प्रश्नांची उत्तरं देऊ शकत होता. उदाहरणार्थ चित्र क्र. १ मधल्या आकृतीलाही तो लागू पडत होता.

 कोनिग्सबर्गच्या गावक-यांना ऑयलरने काय उत्तर दिलं?

ऑयलरचा नियम

 प्रथम आपण ऑयलरचा नियम समजावून घेऊ. चित्र क्र. १ मधल्या आकृतीत काही बिंदू असे आहेत जिथे अनेक रेषा येऊन मिळतात. अशा बिंदूंना आपण 'ठिकाण' म्हणू आणि दोन ठिकाणांना जोडणा-या रेषांना 'पूल' म्हणू. चित्रात दाखवल्याप्रमाणे चार ठिकाणे (आकृतीतल्या ४ टोकांना) अशी आहेत, जिथून प्रत्येकी तीन पूल सुरू होतात आणि एक ठिकाण असं आहे (मध्यावर) जिथून चार पूल निघतात. पेन्सिलीने आकृती गिरवणे आणि पुलावरून पायी जाणे ही सारखीच क्रिया आहे हे ह्या प्रश्नांच्या संदर्भात तुमच्या लक्षात आलं असेलच, त्याचप्रमाणे 'ठिकाण' हे चित्र क्र. १ प्रमाणे बिंदुवत असलं काय किंवा चित्र क्र. २ मधल्या बेटांप्रमाणे (आणि तीरांप्रमाणे) पसरलेलं असलं काय, याचा ह्या प्रश्नांच्या उत्तराशी संबंध येत नाही. मात्र दोन्ही आकृत्यांत