पान:Ganitachya sopya wata.pdf/53

विकिस्रोत कडून
Jump to navigation Jump to search
या पानाचे मुद्रितशोधन झालेले आहे




थोडक्यात लक्षात ठेवण्यासाठी दोन दशांश अपूर्णाकांचा गुणाकार करताना प्रत्येक संख्येत दशांश टिंबानंतर असलेल्या आकड्यांच्या संख्येची बेरीज करून, तेवढे आकडे गुणाकारात, दशांश टिंबाच्या उजव्या बाजूला ठेवायचे.

नमुन्यासाठी काही उदाहरणे पहा.

उदा (1) 16.8 x 5

आता 168
x 5
--------
840  असा गुणाकार आहे.

16.5 मधे दशांश टिंबानंतर एक आकडा आहे तर 5 ही पूर्ण संख्या असल्यामुळे 5. अशी लिहिता येते व दशांश टिंबानंतर आकडा नाही म्हणून गुणाकारात दशांश टिंबानंतर 1 + 0 = 1 आकडा असला पाहिजे. म्हणून 16.8 × 5 = 84.0

या ठिकाणी दशांश टिंबानंतर शून्यच आहे व गुणाकार हा पूर्णांक झाला. साध्या रीतीने देखील

168/10 x 5 = 168/2 = 84 असाच गुणाकार येतो.

उदा. (2) 2.05 x 4.8

इथे 205 x 48 हा गुणाकार आधी करू

205   तो 9840 असा आला. आता दशांश
x 48     टिंबानंतर 2.05 मधे 2 व ए4.8 मधे एक
--------   आकडा येतो म्हणून गुणाकारात 2 + 1 = 3
1640     असे आकडे दशांश टिंबानंतर येतात
+8200
--------
9840

∴ गुणाकार = 9.840 = 9.84 असा आला. पुन्हा लक्षात असू द्या की दशांश टिंबानंतरच्या अपूर्णांक संख्येच्या शेवटी कितीही शून्ये लिहिली किंवा काढली तरी अपूर्णांक बदलत नाही.

दशांश अपूर्णांक
५१